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Abstract: The title pyrophosphates were prepared in good overall yield from a readily available bis-disiloxanylidene 
derivative ofmyo-inositol. © 1997 Elsevier Science Ltd. 

The intensive structural and functional studies of  the myo-inositol cycle have led recently to the 

discovery of  a ubiquitous family of  pyrophosphoryl myo-inositol pentaphosphates (PP-InsP5) and related bis- 

pyrophosphates.l Although present in most mammalian cells at 1 ~M or less, the PP-InsP5 have an unusually 

rapid metabolic turnover 2 consistent with speculation that they act as intracellular autacoids and/or as the 

phosphate donor for an unidentified kinase(s). 3 Their levels are sensitive 4 to changes in cellular Ca 2+ and they 

display high affinity binding to several key regulatory proteins including coatomer, AP-2, and AP-3. 5 

In Dictyostelium, the most extensively studied organism to date, the structure of the predominate PP- 

InsP5 was ini t ia l ly  ass igned as 1-PP-D-myo-InsP5 or its enant iomer ic  3-PP-D r e g i o i s o m e r .  3a The 

regiochemistry was revised to either 4- or 6-PP-D by Vogel 6 based on 2D IH/3iP NMR and was finally 

conf i rmed as the latter using synthetic standards. 7 More recent investigations, however,  have cogently 

demonstrated the principal PP-InsP5 isoform produced by several mammalian cell lines is distinct from the 

above chiral PP-InsP5 isomers, viz., 1-/3-/4-/6-PP-D-myo-InsP5. 8 As a consequence of  the greater attention 

now focused on the two remaining regioisomers, 9 we describe herein a stereocontrolled route to 5-PP-D-myo- 

InsP5 (10) and 2-PP-D-myo-lnsP5 (11). 
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10:R1 = PO(ONa)OPO(ONa)2; R2 = PO(ONa)2 
11:R1 = PO(ONa)2; R2= PO(ONa)OPO(ONa) 2 

Reagents and conditions: (a) 12 (1 equiv) 1H-tetrazole (2 equ!v~, CH2CI2 0°C, 3 h; om-CPBA, 
-78 C, 15 min. (b) i-Pr2NP(OBn)2, 1H-tetrazole, CH2CI2, 0°-23 C, 4 h; m-CPBA, -78 C, 15 m n. 
(c) py°HF/'FHF (1:2.5), 24°C, 3 h; NaHCO3. (d) LiCN (1 equiv), DMF, 23°C, 12 h. (e) (BnO)2POCI, 
Et3N, CH2CI2, 0°-23°C, 2 h. (f) Pd black/NaHCO3, H2 (50 psi),t-BuOH/H20 (6:1), 4 h. 
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Access to these achiral isomers was achieved from the readily available myo-inositol bis- 

disiloxanylidene 1, prepared according to Ozaki I°-ll in 68% yield, as summarized in Scheme 1. Selective 

phosphorylation at the less hindered equatorial C(5)-alcohol in 1 via initial derivatization with benzyl methyl 

N , N - d i i s o p r o p y l p h o s p h o r a m i d i t e  ( 1 2 ) ,  f resh ly  p repa red  f rom c h l o r o - ( N , N -  

diisopropylamino)methoxyphosphine and benzyl alcohol using a modification of Caruthers' procedure, 12 

followed by low temperature peracid oxidation in situ furnished phosphate triester 213 as an ~1:1 

diastereomeric mixture. Mild de-silylation of 2 liberating pentaol 4 as expected required carefully defined 

conditions and was best performed with hydrogen fluoride-pyridine complex at ambient temperature. More 

basic/acidic reagents, e.g., n-Bu4NF, HF, and CF3CO2H, afforded complex product mixtures. 

Dibenzylphosphorylation proceeded smoothly to give hexakisphosphate 6 which was advanced by specific 

LiCN mediated cleavage 9 of the phosphate methyl ester. After extractive isolation, the resultant lithium salt 

(mp 48°C) was coupled immediately with dibenzyl chlorophosphonate as described previously 9 to give the 

protected pyrophosphate 7. Catalytic hydrogenolysis, purification by ion exchange chromatography (Q 

Sepharose), and bicarbonate neutralization led to the sodium salt of 5-PP-myo-InsPs (10). 

Alternatively, prior dibenzylphosphorylation of 1 at the C(5)-alcohol and subsequent derivatization 

with 12 gave rise to 3 whose conversion to 2-PP-myo-InsPs (11) via tetraol 5, hexaphosphate 8, protected 

pyrophosphate 9, and catalytic hydrogenolysis exactly paralleled the above sequence. The comparisons of 10 

and 11 with natural material and the results of pharmacologic testing will be presented elsewhere. 
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